

APPLICATION DEVELOPMENT
William G. Brown
OTJ, Winter 1996

Oracle Financial Analyzer: A Look Under the Hood
In-depth discussions of OFA's architecture and how to specify information so your
system is easy to develop and maintain.

Oracle entered the growing OLAP market last year with its acquisition of a
multidimensional database and a set of applications from Information Resources Inc.
(IRI). One of the applications, Oracle Financial Analyzer (OFA), is a powerful
application that uses the Express multidimensional database to analyze financial data.
OFA's unique tiered design lets groups within an organization's hierarchy customize the
application to their own specific business requirements. OFA has been successfully used
for budgeting, planning, financial reporting, product profitability analysis, sales
forecasting, and activity-based costing in industries as diverse as banking, manufacturing,
retail, consumer package goods, and telecommunications.

Most developers use the OFA front end to build their applications. In this article, I
discuss how you can develop OFA applications faster and streamline ongoing
maintenance by using the Express 4GL (fourth-generation language) to access the
Express database layer in OFA. Specifically, I describe OFA's architecture and how to
specify key information so your system is easier to develop and maintain. I review the
key Express Server objects that OFA maintains, multiuser development with OFA, how
to maintain these objects at the database layer, and how to use Express to load external
data sources. I also give you some suggestions on how to debug OFA problems.

 OFA Architecture

A typical OFA application consists of a PC-based DBA workstation that controls a
shared Express database. The PC DBA workstation has a copy of the OFA front end and
the Personal Express database containing OFA application code. (See Figure 1.) Using

tools provided by OFA to define various OFA objects (such as dimensions, hierarchies,
and hypercubes), a DBA customizes OFA for a specific application on the DBA
workstation. The DBA then distributes the OFA objects to the shared Express database
on the server. User workstations access the shared database, which acts as the central
repository for catalogs and data. This arrangement lets a DBA test changes on the PC
DBA database before applying them to the shared database on the server accessible by all
users.

How OFA Interacts with Express

The key to simplifying development and ongoing maintenance in OFA is understanding
how OFA interacts with Express. Whenever a DBA creates an object using the OFA front
end, OFA automatically defines that object and a set of related objects in Express. The
related OFA-created objects include valuesets, variables, and relations that control how
OFA behaves. In addition, OFA makes entries into its own meta-dictionary, implemented
as a series of catalogs. Catalogs are Express variables that store application information.
Understanding the objects OFA creates, how to interpret OFA catalogs, and how to
change the catalogs if needed will greatly improve your productivity as an OFA
developer.

Until you are an expert in how OFA objects and their catalogs interact with one another,
it is best to create and maintain objects in OFA using the OFA front end only. Once
you're familiar with the object relationships that OFA creates, you can use Express to add
and maintain objects directly in the catalogs, bypassing the OFA front end altogether.
The simplest way to begin to understand the nature of these relationships is to add objects
using the OFA front end so you can see the relationships that OFA creates. After you add
objects and are able to see these relationships, whenever you change a catalog value you
will know which associated objects need to be changed as well. You must rename objects
before distributing them to the user community; therefore, it is important that you choose
object names carefully before you begin creating your OFA objects.

Although using Express can speed up development of your OFA application, many
changes are not immediately recognized by OFA until you either restart the OFA front
end or register the changes with the OFA front end (which is called re-registering OFA).
Re-registering forces OFA to scan the critical database information and initialize the
OFA front-end arrays. The simplest, least graceful way to re-register is to restart the OFA
front end. Oracle support has a technical note entitled "LC.CATALOG and Setting Up
Customization in OFA (FMS 4.6)" that describe how to re-register without restarting the
OFA front end.

Important OFA Objects

As you work with OFA, you will find that you spend most of your time working with the
dimension and hierarchy objects. Each OFA-created object associated with a dimension

contains a prefix of up to six characters that is used as an abbreviation for the dimension.
(For example, you might assign the prefix "ORG" to the ORGANIZATION dimension in
an application.) Dimension prefixes are important because they can help you understand
the Express structures that OFA defines. Getting acquainted with the prefix values
facilitates your understanding of the OFA database and can help you create intelligent
catalog entries.

To find a dimension prefix, look in the OFA front end or in the dimension catalog
(DM.CATALOG). Table 1 lists the standard OFA-created dimension objects. You can
use Table 1 as a checklist when developing your application to ensure that you are
populating your tables correctly. Keep in mind that once you create a dimension setting
for an object name, prefix, dimension type, or width, you cannot change it without
substantial effort. Therefore, it is important that you determine the dimension settings
carefully before creating the dimensions using the OFA front end.

For every new dimension you create, OFA also creates objects that store and control
hierarchies. Each OFA-created object associated with a hierarchy ends with a prefix of up
to six characters that is used as an abbreviation for the hierarchy. Table 2 lists the
hierarchy objects created by OFA. OFA uses the hierarchies you define to determine the
order of the dimension members in dialog prompts. If you do not have a hierarchy or are
not using one, the dimension members are shown in the order you created them.

The OFA Catalogs

OFA catalogs contain information about application objects. Each OFA catalog variable
is defined by two dimensions: an ENTRY dimension and a PROP (property) dimension.
The ENTRY dimension is the list of objects added to the database by a DBA or end user.
The PROP dimension is the list of properties (for example, who created the object and
references to other objects). OFA associates a number of application objects with the
ENTRY dimension. Most of these objects either are temporary (their values disappear
when you exit OFA) or are filled in dynamically by OFA. These objects will rarely, if
ever, have any impact on the development of your OFA application.

Each OFA-created object associated with a catalog begins with a prefix that is used as an
abbreviation for the catalog. Table 3 lists the most common OFA catalogs and their
prefixes. You will also find it useful to remember that catalogs are text variables. In
Express, text variables have an important feature that is easily overlooked, even by
experienced Express programmers. A single cell can contain many lines of text data. Use
the TABLE command to view the catalogs and then press the F4 key twice to view the
complete text of a catalog variable cell.

Each catalog has a different set of properties associated with it. Table 4 lists the
properties common to each catalog, as well as the properties specific to the attribute,
hierarchy, and model catalogs. If you are using the OFA front end to create your objects,

OFA will automatically populate the catalogs with the relevant properties. If you are
using Express, you must populate the catalogs with the relevant properties yourself. In
addition to knowing the properties of each catalog, you should understand the functions
of the attribute, hierarchy, and model catalogs.

It is especially important to use the OFA front end to maintain the dimension and
financial data catalogs (DM.CATALOG and FD.CATALOG). OFA automatically adds
and deletes OFA-created objects whenever you change these catalogs.

Example of OFA's Interaction with Express

Using the creation of a dimension as an example, you can see how OFA interacts with the
Express database. Assume that we have created a dimension called ORGANIZATION
and have also added a corporate rollup hierarchy to ORGANIZATION to be named
CORP_ROLL. Following are the most important values in this example's dimension
catalog (DM.CATALOG):

 DM.CATALOG
DM.PROP DM.ENTRY

 ORGANIZATION
CLASS PERSONAL
MODIFIER AA
TIME.MODIFIED 96/09/06 14:02:08
DESCRIPTION ORG.DESC
PREFIX ORG

Notice that the DM.CATALOG has a DM.ENTRY titled "ORGANIZATION." The
values of the catalog reflect the screen inputs required when defining this dimension. Of
particular importance is the property PREFIX, which is used by OFA when creating the
related objects for this dimension.

When we defined the dimension ORGANIZATION, OFA created a set of related Express
database objects. The following are the most important objects for an OFA developer:
ORG.DESC, ORG.LBL.ROW, ORG.LBL.COL, ORG.STD, FMSHDIM.ORG,
FMSHREL.ORG, FMSHDEP.ORG, and FMSHSEQ.ORG. Refer to Tables 1 and 2 for
more information on how these objects are used by OFA.

Following are the most important values in our example's hierarchy catalog (hi.catalog):

 HI.CATALOG
HI.PROP HI.ENTRY

 HI.AA12345
CLASS PERSONAL
MODIFIER AA
TIME.MODIFIED 96/09/06 14:03:00
DIMENSION ORGANIZATION
TYPE TREE

Even though we gave the hierarchy the name "CORP_ROLL"in the OFA front end, OFA
used an internal name for this hierarchy. This name is a concatenation of the object's
prefix (HI for hierarchy), a period, the user's unique internal code (AA for the DBA), and
a randomly generated number (12345 in this example). Note that OFA also added a
member to the FMSHDIM.ORG dimension with the same name, HI.AA12345. OFA uses
internal names for hierarchies, models, and attributes. In the next section I show an
example of how to change this internal name to one that is both easier to remember and
self-documenting.

Maintaining Catalogs Behind the Scenes

The primary reason you should maintaining OFA catalogs yourself is that you can then
create more readable and understandable names for the Express objects that OFA creates.
With the exception of the object names for dimensions and financial data items, you
cannot specify the names for the objects created using the OFA front end. As you add
hierarchies, models, and attributes, OFA automatically creates names for the catalogs and
the objects they describe. As you saw previously, the OFA front end might create the
name HI.AA12345 for the Corporate Rollup for the ORGANIZATION dimension. I
recommend renaming hierarchy, attribute, and model objects to more readable names.
Wherever possible, rename them so that they conform to the OFA standard of embedding
a prefix in the object name that references the relevant dimension.

Hierarchies control the aggregation of data along a dimension. When a new hierarchy is
created, OFA adds a new member to the hierarchy dimension HI.ENTRY and fills in the
hierarchy catalog (HI.CATALOG). However, OFA does not define a new object; instead,
it adds a member to the FMSHDIM.prefix dimension. (Refer to Table 2.) The
relationship between the HI.CATALOG and FMSHDIM.prefix assumes that the
members are identical. If you change the hierarchy name, you must rename the members
of both objects. In the hierarchy example given previously, we want to rename the
hierarchy HI.AA12345 to CORP_ROLL. To do this, you must change the name of the
hierarchy in both the HI.ENTRY dimension and the FMSHDIM.ORG dimension as
follows:

maintain HI.ENTRY rename
'HI.AA12345' 'CORP_ROLL'
maintain FMSHREL.ORG rename
'HI.AA12345' 'CORP_ROLL'

Attributes control the relationships between dimensions. For example, your OFA
application may receive budget data stated in different currencies from different
countries. An attribute would relate each COUNTRY dimension to a CURRENCY
dimension to facilitate translating the currency to U.S. dollars. Assume that the
dimension prefixes are CTRY and CURR, respectively. When a new attribute is created,
OFA adds a new member to the attribute catalog dimension RL.ENTRY, fills in the
attribute catalog (RL.CATALOG), and creates a new object. Assume that OFA has
named the new attribute dimension member RL.AA54321 and the new object
.RL.AA54321R. To change the OFA-created object names to names based on the
dimension prefixes, you must modify both RL.ENTRY and RL.CATALOG as follows:

maintain RL.ENTRY rename
'RL.AA54321' to 'CTRY_CURR'
rename .RL.AA54321 CTRY_CURR
limit RL.ENTRY to 'CTRY_CURR'
limit RL.PROP TO 'OBJ.NAME'
RL.CATALOG='CTRY_CURR'

Models control the calculation of data along a dimension. Although hierarchies will only
aggregate, models can perform a wide range of calculations. When you create a new
model, OFA adds a new member to the model dimension MD.ENTRY, fills in the model
catalog (MD.CATALOG), and defines the object indicated by the value
EQU.VARIABLE in the MD.CATALOG. If you change the object name yourself, you
must modify both MD.ENTRY and MD.CATALOG as follows:

maintain MD.ENTRY rename
'MD.AA12345' 'HC_BUDGET'
rename .MD.AA12345E HC_BUDGET_T
limit MD.ENTRY to 'HC_BUDGET'
limit MD.PROP to 'EQU.VARIABLE'
MD.CATALOG='HC_BUDGET_T'

Changes to the model must be applied to the object indicated by the value of
EQU.VARIABLE. Once you've made the model changes, you must use either the OFA
front end or Express to compile the model so that the changes will be reflected. Based on
the value for MD.ENTRY, OFA will automatically create PROGRAM and RECALC
objects if they are required. Use the program MD.COMPILER to compile models. To
compile the model in the above example, issue the command:

call md.compiler('HC_BUDGET')

Loading Data and Dimension Values into OFA

Populating OFA objects with data is usually done by extracting data from existing
production systems such as the General Ledger, Payroll, or Sales System. Extracts from

these systems will also provide the master dimension values and rollup structures needed
to populate OFA dimensions and hierarchies.

If the source for your OFA application is the Oracle General Ledger, you should use the
built-in Oracle General Ledger interface to load data and dimension values. To load data,
dimensions, and hierarchies into OFA from external sources other than the Oracle
General Ledger, you will need to use the Express 4GL. (See Listing 1.)

When designing your data loader, keep in mind that OFA assumes that the flow of
changes is from the PC DBA workstation to the server. If you want to load dimensions
and hierarchies on the server, you need to update the PC DBA database with the
dimension and hierarchy changes from the server. The process to update the PC DBA
will vary with each OFA installation.

Important: If you are loading a hierarchy from an external file, you must calculate the
values for the OFA depth and sequence variables yourself. (A shareware copy of a utility
that calculates the values for depth and sequence objects based on the values in the
FMSHREL.prefix is available on the OTJ Web site at http://www.otj.com.) If you fail to
do this, the objects will not be calculated and you will not be able to use your hierarchy.
See Listing 2 in the electronic version of this article on the OTJ Web site for a simple
example of how to load a hierarchy.

Multi-User Development

OFA stores all development catalogs and their associated objects on the PC DBA
workstation. Once you and your colleagues are familiar with the OFA catalogs, their
associated objects, and native Express, you can set up an OFA development environment
that lets multiple developers work simultaneously on different parts of your OFA
application. If you are developing on a PC workstation that is not the PC DBA
workstation, you can simply move your finished code to the PC DBA workstation using
the Express EXPORT command. The EXPORT command builds an Express Interchange
Format (EIF) file that a DBA may IMPORT to his/her PC workstation. This process will
vary depending on the specific OFA objects (hierarchies, dimensions, models, reports,
and so on) that you are maintaining. A brief example of how you would maintain a model
follows.

Assume you are developing on a PC workstation other than the PC DBA workstation.
You have just finished the Headcount Budget model that is run against the LINE
dimension. The model dimension (MD.ENTRY) member is HC_LINE. The object
indicated by the property dimension (MD.PROP) member EQU.VARIABLE in the
model catalog (MD.CATALOG) is HC_MODEL_T. You will need to move these objects
to the PC DBA. The objects indicated by property dimension (MD.PROP) members
PROGRAM and RECALC will be regenerated when the DBA compiles the model. The
commands below use an OFA utility to compile the model. This example assumes that

you did not create any new LINE dimension members. You would issue the following
commands:

limit MD.ENTRY to 'HC_BUDGET'
limit MD.PROP to all
limit LINE to all
export MD.CATALOG HC_MODEL_T to
eif file 'HCMODEL.EIF'

The DBA would then issue these commands and re-register the changes:

import all from eif file
'HCMODEL.EIF'
call md.compiler('HC_MODEL')

Debugging OFA

With the information in this article, you should be able to use Express to speed up your
OFA application development and maintenance - but this is just a starting point for
gaining an expert level of understanding about OFA. You can also use Express as a
debugging aid as follows.

Set the Personal Express option IFCOPY to YES after starting OFA. Set PAGEPAUSE
to NO. (If you forget to set PAGEPAUSE to NO, Express will pause after one screen is
filled with output. OFA will then signal an error message and require that the session be
restarted.) IFCOPY will echo on your screen the program calls between the OFA front
end and the Express database. Pay particular attention to anything containing the word
CATALOG or any of the prefixes listed in Table 1. This information can help you
pinpoint problems and learn more about how OFA behaves.

If you are using the TABLE command to view objects, be sure to escape out of the table
before switching back to the OFA front end.

Leveraging Your OFA Application

Learning how to access the Express database layer in OFA in the early stages of your
OFA implementation will enable you to tie OFA to your existing production systems,
increase developer productivity, and streamline ongoing OFA application maintenance.
By following the tips and techniques summarized in this article, you will be well on your
way to taking full advantage of the insights OFA can provide into your financial
applications.

William G. Brown is a consultant with Symmetry Corp., an OLAP consulting firm
headquartered in San Rafael, Calif. William has six years of experience implementing
OLAP applications at Fortune 500 companies, including Oracle Corp.'s own OFA-based
financial analysis and budgeting system. You can email William at
wgbrown@symcorp.com.

FIGURE 1

DBA Workstation

Figure 1: OFA Architecture

Personal Express
DBA Database

Catalogs Data

OFA
Application Code

DBA
OFA Front-End

User's Workstation

Personal Express
User's Database

Catalogs Data

OFA
Application Code

User's
OFA Front-End

Shared Express Database

UNIX Server

Catalogs Data

OFA
Application Code

TABLE 1. Objects Created by OFA for Dimensions

Note: The word prefix denotes any dimension created with OFA.
prefix.DESC Stores the descriptive values for dimension members.
prefix.LBL.ROW Stores the long descriptive values for dimension members.
prefix.STD Boolean variable that indicates whether the dimension member was

distributed from the DBA or was a locally created member. If the
variable is set to NO, OFA assumes it was locally created. If it is set to
YES, then OFA assumes the same dimension member exists in the
server database and allows the data to be uploaded or downloaded.

prefix.AGG Controls the method OFA uses to aggregate data over time. This object
exists only if the dimension supports time aggregations. To modify this
setting, see the Maintain Dimension option in OFA. You can use one
of the following six methods to control time aggregation:

Internal Value Meaning
SUM Adds months into quarters (default)
BEG Moves first month only into quarter
END Moves last month only into quarter
AVG Averages months into quarter
AVGC Averages across ORG and TIME
RECALC Recalculates dimension members after the data have been aggregated

over time. Used to calculate ratios correctly at the quarter and year.
prefix.BW An integer variable that can be used to control better/worse variance

calculations. This object exists only if the dimension supports
better/worse variance indicators. To modify this setting, see the
Maintain Dimension option in OFA. You can use one of the following
two settings for this option:

Internal Value Meaning
1 Subtract Actuals from Budget
-1 Subtract Budget from Actuals

Important: It is the developer's responsibility to make use of this
variable when constructing variance calculations. The example below
shows the variance calculation that would be entered in the Maintain
Financial Data form option.

(ACTUALS-BUDGET)*nafill(ACCT.BW 1)

The nafill function is used here to set the default behavior of the
variance calculation. If the user has not filled in all the values of the
better/worse variable, nafill ensures that the default behavior of the
variance calculation is ACTUALS-BUDGET.

TABLE 2. Objects Created by OFA for Hierarchies

Note: The word prefix denotes any dimension created with OFA.
FMSHDIM.prefix Lists the hierarchies for the dimension. Every hierarchy created for the

dimension has a member in this list as well as in HI.ENTRY.
FMSHREL.prefix Stores the parent/child relationship used to calculate totals and control

drilling into more detailed data. This structure is often referred to as a
self-relation because it relates the dimension to itself.

FMSHDEP.prefix An integer variable that stores dimension members' depth in the
hierarchy. Depth is a count of the number of members between a given
member and the top of the hierarchy. The depth at the top of a
hierarchy is zero.

FMSHSEQ.prefix An integer variable that stores dimension members' sequence in the
hierarchy. Sequence is the order in which the members appear in the
hierarchy.

TABLE 3. Common OFA Catalog Prefixes

Note: Catalogs are named prefix.CATALOG. Catalog dimensions are named
prefix.ENTRY and prefix.PROP, respectively. For example, the Master Catalog is named
MC.CATALOG, with dimensions of MC.ENTRY and MC.PROP.
Prefix Object Catalog Object Function

MC Master Catalog Catalog of major system catalogs
DM Dimensions All dimensions created via the OFA front end
HI Hierarchies Dimension hierarchies
RL Attributes Relation of two dimensions
FD Financial Data Items Hypercubes of data, both stored and calculated
RE Reports User-created reports
BR Folders Lists of reports, worksheets, or graphs
BW Worksheets User-created worksheets
SO Solve Rules to calculate a hypercube's derived data using

hierarchies and models
GR Graphs User-created graphs
DI Display Displays formatting for reports, worksheets, or graphs
SG Segment Supporting object for reports, worksheets, or graphs
CO Component Supporting object for reports, worksheets, or graphs
SL Selection Dimension selection for reports, worksheets, or graphs
DB Database Names and locations for OFA databases

TABLE 4. Catalog Properties

Properties Common to All Catalogs
Property Description

CLASS PERSONAL (Locally created) or STD (Distributed from the DBA.
The user may not change the item.)

MODIFIER User ID code of the object owner
TIME.MODIFIED Date and time stamp of last update
DESCRIPTION Text description of object (not used in most cases)

Attribute Catalog (RL.CATALOG) Properties

Property Description
REL.TYPE Type of relation ONE to MANY or MANY to MANY
BASE.DIM Base dimension for relation
AGGR.DIM Group dimension for relation
OBJ.NAME Express name for object that stores the relation

Hierarchy Catalog (HI.CATALOG) Properties
Note: Other properties not listed here are used with the Oracle GL interface.

Property Description
DIMENSION Dimension the hierarchy is based on
TYPE Always TREE

Model Catalog (MD.CATALOG) Properties

Property Description
BASE.DIM Dimension the model runs against
COMPILE.NEEDED Shows whether the model has been compiled
VARIABLES Variables the model can run against
DIMENSIONS All dimensions used in the model. Contains the value in

BASE.DIM and, if time functions such as LAG and LEAD are
used, TIME.

PROGRAM Name of the compiled version of the model
RECALC Name of the compiled version of the model for recalculated lines

only. See the section on dimension objects, specifically:
prefix.AGG

EQU.VARIABLE Text variable where changes to the model are made

LISTING 1. Example of Loading an External Data File

DEFINE READ_GL PROGRAM
LD Read GL level data
PROGRAM
"|---

"|
"| Program: READ_GL
"|
"| Purpose: Reads the supplied GL flat files,
maintains dimensions
"| and populates the actuals hypercube.
"| The month of the data file is stored in
the header record.
"| O (for ORG) and A (for account) are
appended to the front of
"| each dimension member. OFA requires that
dimension
"| members begin with a character.
"|
"|---

"| Written By: William Brown (Symmetry)
"|
"| Changed By: Date: Change:
"|
"|---

variable _fid integer "File identifier
used by the FILEOPEN command

variable _month text "The month of data
contained in the in file.

"Populated by the first record in the file.

trap on error "Set error
handling logic on just in case

pushlevel 'READ_GL' "Save the status of
the dimensions
push ACCT ORG TIME

"This program makes two passes through the data
files. The first pass maintains
"(adds) any new dimension members. The second pass
reads the ACTUAL data. Adding
"dimension members first and then reading data makes
the database more efficient.

_fid = fileopen('/data/DATAFILE.TXT') read)
 "open the datafile
to be read

"Skip the first record. The first record lists the
month of data that the file
"contains. It is only required when data, not
dimensions, is being read in.

fileread _fid stopafter 1

"After skipping the first record process the rest of
the file adding dimension members.

fileread _fid -
 col 1 w 10 append lset 'O' ORG -
 col 12 w 15 append lset 'A' ACCT -

fileclose _fid "Close the file
and then reopen it to restart the
 "process at
the top of the file

update "Save the changes

_fid = fileopen('/data/DATAFILE.TXT') read)

"Read the first record which holds the month of data
in the file

fileread _fid stopafter 1 col 1 w 5 _month

limit TIME to _month

"Select the month of data that is being read. The
value in the first record has
"all ready been formatted to the OFA specifications.

"Now that the dimensions have been populated from the
first pass through the file
"the second pass does not add any dimension members
but populates the ACTUAL cube.

fileread _fid -
 col 1 w 10 match lset 'O' ORG -
 col 12 w 15 match lset 'A' ACCT -
 col 30 w 15 ACTUAL

update "Save the
changes

fileclose _fid "Close the
data file
poplevel 'READ_GL' "Restore status
return "Return to
calling program

error: "Error
processing section
signal errorname errortext "Signal error to
calling program
poplevel 'READ_GL' "Restore status
fileclose _fid "Close the
data file

LISTING 2. Example of Loading a Hierarchy

DEFINE READ_ACCT PROGRAM
LD Read account file, hierarchy
PROGRAM
"|-------------------------------------
"|
"| Name: READ_ACCT
"|
"| Purpose: Reads the ACCOUNT hierarchy files in the
data directory and maintains
"| the ACCOUNT dimension. Reads descriptions,
hierarchies and sets OFA objects
"| correctly. This program assumes only one
hierarchy for ACCOUNT.
"| ACCOUNT prefix: ACCT
"|
"| Written by: WGBROWN (SYMMETRY)
"|
"| Changed By: Date Change
"|
"|
"|---------------------------------------

variable _fid integer "file
identifier used by the FILEOPEN command

trap on error "Set
error handling logic on just in case

limit FMSHDIM.ACCT to 'MGMT_ACCT' "Select the
hierarchy being populated
_fid = fileopen('/data/ACCOUNT.TXT') read)

"Open the file to be read.

"The first pass through the file adds any new ACCOUNT
dimension values.
"The first column (col 1 w 15) holds the child value
and the second column listed

"(col 80 w 15) holds the parent value. Any member
that is a parent should also be
"in the child column. Add an 'A' to the dimension
value because OFA requires that
"dimension members start with an alpha character.

fileread _fid -
 col 1 w 15 append lset 'A' ACCT -
 col 80 w 15 append lset 'A' ACCT -

fileclose _fid

fileread _fid -
 col 1 w 15 match lset 'A' ACCT -
 col 16 w 10 ACCT.LBL.COL - "populates
description variables
 col 27 w 30 ACCT.LBL.ROW -
 col 58 w 30 ACCT.DESC -
 col 99 w 1 ACCT_TYPE - "asset,
liability, revenue, expense, hc
 col 101 w 15 lset 'A' FMSHREL.ACCT "hierarchy
value, parent of col 1

fileclose _fid
"close file

upd

limit ACCT to all
"Set the aggregation method for each dimension member
"Account type of A or L get averaged over time
otherwise they get summed.
ACCT.AGG= if ACCT_TYPE eq 'A' or ACCT_TYPE eq 'L'
then 'AVG' ELSE 'SUM'

return

error:
"error processing
fileclose _fid
SIGNAL ERRORNAME ERRORTEXT
END

